SPDE Limits of the Random Walk Metropolis Algorithm in High Dimensions

نویسندگان

  • Jonathan C. Mattingly
  • Natesh S. Pillai
  • Andrew M. Stuart
چکیده

Mathematics Institute Warwick University CV4 7AL, UK e-mail: [email protected] Abstract: Diffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying efficiency. In particular they facilitate precise estimates of the number of steps required to explore the target measure, in stationarity, as a function of the dimension of the state space. However, to date such results have only been proved for target measures with a product structure, severely limiting their applicability to real applications. The purpose of this paper is to study diffusion limits for a class of naturally occuring high dimensional measures, found from the approximation of measures on a Hilbert space which are absolutely continuous with respect to a Gaussian reference measure. The diffusion limit to an infinite dimensional Hilbert space valued SDE (or SPDE) is proved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion Limits of the Random Walk Metropolis Algorithm in High Dimensions by Jonathan

Diffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying computational complexity. In particular, they lead directly to precise estimates of the number of steps required to explore the target measure, in stationarity, as a function of the dimension of the state space. However, to date such results have mainly been proved for target measures with a produ...

متن کامل

Diffusion Limits of the Random Walk Metropolis Algorithm in High Dimensions

Diffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying computational complexity. In particular, they lead directly to precise estimates of the number of steps required to explore the target measure, in stationarity, as a function of the dimension of the state space. However, to date such results have mainly been proved for target measures with a produ...

متن کامل

Complexity bounds for Markov chain Monte Carlo algorithms via diffusion limits

We connect known results about diffusion limits of Markov chain Monte Carlo (MCMC) algorithms to the computer science notion of algorithm complexity. Ourmain result states that any weak limit of a Markov process implies a corresponding complexity bound (in an appropriate metric). We then combine this result with previously-known MCMC diffusion limit results to prove that under appropriate assum...

متن کامل

Complexity Bounds for MCMC via Diffusion Limits

We connect known results about diffusion limits of Markov chain Monte Carlo (MCMC) algorithms to the Computer Science notion of algorithm complexity. Our main result states that any diffusion limit of a Markov process implies a corresponding complexity bound (in an appropriate metric). We then combine this result with previously-known MCMC diffusion limit results to prove that under appropriate...

متن کامل

A guided walk Metropolis algorithm

The random walk Metropolis algorithm is a simple Markov chain Monte Carlo scheme which is frequently used in Bayesian statistical problems. We propose a guided walk Metropolis algorithm which suppresses some of the random walk behavior in the Markov chain. This alternative algorithm is no harder to implement than the random walk Metropolis algorithm, but empirical studies show that it performs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009